THE ELECTRIC CURRENT

A presentation by Giulia Leo, Liceo Classico Socrate, IIIF, 2018-2019

Before we start...

Charge = Carica

Positive charge

Negative charge

Flow (of charges) = flusso/moto di cariche

Surface $=$ Superficie

Conductor $=$ conduttore

Mathematical Signs

+ plus, add, positive
- minus, subtract, less, take away, negative

X * times, multiplied by
$\div /$ divided by, divide \square
$=$ is equal to, equals

Definition of Electric Current

Electric current can be defined as an ordered flow of positive or negative electric charges.

In order to quantify electric current, we use the Intensity of current.

 Intensity of current is measured by the quantity of electricity crossing a specified area of equipotential surface per unit time.

The SI unit of electric current is the Ampere, which is the flow of electric charge across a surface at the rate of one coulomb per second.

$$
1 A=1 C / 1 s
$$

The Direction of Electric Current

Benjamin Franklin defined the direction of electric current as opposite to the direction of motion of electrons.

The Electrical Circuit

An electrical circuit is a path through which an electrical current flows.
It is composed by a chain of conductors connected to an energy source.

Types of Circuits
 A) PARALLEL CIRCUIT

- A parallel circuit has two or more paths for current to flow through.
- Voltage is the same across each component of the parallel circuit.
- You can find total resistance in a Parallel circuit with the following formula:

1/Rt = 1/R1 + 1/R2 + 1/R3 +...

- If one of the parallel paths is broken, current will continue to flow in all the other paths.

Types of Circuits

B) SERIES CIRCUIT

- In a series circuit the current remains unchanged all along the circuit: all electric components receive the same current.
- The total resistance of a series circuit is equal to the sum of individual resistances.

- If the circuit is broken at any point, no current will flow.

First Ohm's Law

In Ohmic conductors the intensity of current that flows through a device is directly proportional to the applied voltage.

The unit of
Resistance is the
Ohm,
$\Omega: 1 \Omega=1 \mathrm{~V} / 1 \mathrm{~A}$.

R stands for Resistance, and it is the constant of proportionality between ΔV and i.

Second Ohm's Law

The Resistance in a conducting wire is directly proportional to its length and inversely proportional to its crosssectional area.

The SI unit of
Resistivity is the
$\Omega \times m$

ρ stands for Resistivity, and it's the constant of direct proportionality between R and l and of inverse proportionality between R and A.

Resistance VS Resistivity

- Resistance depends on the geometry, section and lenght of the conductor.
- Resistance is a characteristic of the conductor.
- Resistivity can depend on the material of the conductor or on variations of temperature.
- Resistivity is a characteristic of the material.

Superconductivity

Superconductivity is the property of some materials to conduct electricity without resistance below a certain temperature, whose value changes depending on the material.

