# THE ELECTRIC CURRENT

A presentation by Giulia Leo, Liceo Classico Socrate, IIIF, 2018-2019

#### Before we start...

#### **Charge** = Carica





Positive charge

Negative charge

#### *Flow (of charges)* = *flusso/moto di cariche*



#### *Surface* = *Superficie*



#### **Conductor** = conduttore



### **Mathematical Signs**

- plus, add, positive
- minus, subtract, less, take away, negative
- 🗙 🛧 times, multiplied by
- + / divided by, divide
- is equal to, equals

#### **Definition of Electric Current**



Electric current can be defined as an ordered flow of positive or negative electric charges.

#### In order to quantify electric current, we use the **Intensity of current**.

Intensity of current is measured by the quantity of electricity crossing a specified area of equipotential surface per unit time.



The SI unit of electric current is the Ampere, which is the flow of electric charge across a surface at the rate of one coulomb per second.

$$1 A = 1 C/1s$$

### **The Direction of Electric Current**



Benjamin Franklin defined the direction of electric current as opposite to the direction of motion of electrons.

### **The Electrical Circuit**



An electrical circuit is a path through which an electrical current flows.

It is composed by a chain of conductors connected to an energy source.

## **Types of Circuits**

#### A) PARALLEL CIRCUIT



- A parallel circuit has two or more paths for current to flow through.
- Voltage is the same across each component of the parallel circuit.
- You can find total resistance in a Parallel circuit with the following formula:

1/Rt = 1/R1 + 1/R2 + 1/R3 +...

• If one of the parallel paths is broken, current will continue to flow in all the other paths.

# **Types of Circuits**

#### **B)** SERIES CIRCUIT

- In a series circuit the current remains unchanged all along the circuit: all electric components receive the same current.
- The total resistance of a series circuit is equal to the sum of individual resistances.
- If the circuit is broken at any point, no current will flow.



### First Ohm's Law

In Ohmic conductors the intensity of current that flows through a device is directly proportional to the applied voltage.



R stands for **Resistance**, and it is the constant of proportionality between  $\Delta V$  and *i*.

### Second Ohm's Law

The Resistance in a conducting wire is directly proportional to its length and inversely proportional to its crosssectional area.



 $\rho$  stands for **Resistivity**, and it's the constant of direct proportionality between R and *l* and of inverse proportionality between R and *A*.

#### **Resistance VS Resistivity**

Resistance depends

 on the geometry,
 section and lenght of
 the conductor.

 Resistivity can depend on the material of the conductor or on variations of temperature.

 Resistance is a characteristic of the conductor. Resistivity is a characteristic of the material.

### Superconductivity

Superconductivity is the property of some materials to conduct electricity without resistance below a certain temperature, whose value changes depending on the material.

